Statistical challenges in the "Omics"

Octavio Martínez de la Vega Computational Biology Lab "From Data to Knowledge"

National Laboratory of Genomics for Biodiversity (Langebio - 'Unidad de Genómica Avanzada') Cinvestav - Irapuato

March 19, 2015

a mills.

 $A \oplus A \times A \oplus A \times A \oplus A$

 \equiv

" Om ics"?

 \blacktriangleright ...

Informally refers to the study of 'whole' sets of molecules,

- \triangleright Genomics Study the whole genome (in contrast to studying a single gene).
- \triangleright Transcriptomics Study all genes expressed in a tissue under given conditions.
- \triangleright Proteomics Same for all proteins.
- \triangleright Metabolomics All chemical compounds produced

The main change with traditional molecular biology: The very large nature of datasets

イロメ イ母 トイチ トイチャー

 \equiv

GeneBank 2015

187,893,826,750 bases, from 181,336,445 sequences

×

 \mathbf{r} λ = λ

× ∍ \equiv

 299

How many genomes are there?

Sequenced versus Existent (both estimated):

- ▶ Microorganisms: $18,000 / 10 \times 10^6$ (< 0.2%)
- ▶ Fungi: $356 / 1.5 \times 10^6$ (< 0.03%)
- Insects: $98 / 10 \times 10^6$ (< 0.001%)
- Plants $150 / 435,000 (< 0.04\%)$
- \blacktriangleright Terrestrial vertebrates and fish: 235 / 80,500 (< 0.3%)
- ▶ Marine invertebrates: $60 / 6.5 \times 10^6$ (< .001%)
- ▶ Other (nematodes, ...): $17 / 1 \times 10^6$ (< .001%)

マーター マーティング エー・エー

 \equiv

Genomics pipeline / challenges

- \triangleright Select one (or a few) individual(s) / Who?.
- \triangleright Sequence tens (to hundreds) of millions of small DNA sequences / keep and order these data.
- \triangleright Solve this gigantic puzzle (obtain the 'genome') / Assembling.
- \triangleright Where are the genes? / find (models) for genes.
- \triangleright Make sense of all this / Annotate, Annotate, Annotate, ...

マーター マーティング アイディー

Genes: complex constructs

Genes are complex 'data structures' They include code for transcription and translation but also fuzzy signals for its processing (promotors, enhancers, exon / intron borders, methylation patterns, etc.)

Finding the 'genes' in a newly sequenced genome is a non-trivial exercise.

イロメ イ押 トラ ミトラ ミント

Statistical challenge: Model genes by HMM

Hidden Markov models (HMM): A finite model describing the probability distribution over an infinite set of sequences.

 \leftarrow \cap \rightarrow \leftarrow \cap \rightarrow

A B K -4 E

Statistical challenge: Model genes by HMM

To predict genes in a new genome by HMM we need:

- \triangleright A good model with accurate estimates of transition probabilities.
- \triangleright This can only be obtained and contrasted using empirical evidence on related genomes.
- \triangleright Even when some of the states are well defines (p.e., 'coding' vs. 'non-coding' or repeated DNA), other are more fuzzy signals (p.e., 'intron' vs. 'exon' regions, etc.).
- \triangleright Signals (code) between and within genes are not as well conserved as the usual 'genetic code' -in fact, there are many meta-codes that are taxa-specific.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Statistical challenge: Gene Identification

Even when model organisms (Human, mouse, rat among mammalians; Arabidopsis among plants, etc.) have well identified genes in other organisms we do not have experimental evidence to identify the genes with particular peptides

- \triangleright We can compare similarity between DNA segments to look for an 'orthologous' gene.
- \blacktriangleright However, different gene families evolve (diverge) at different speeds.
- \triangleright For many classes of non-protein coding genes there is a high degree of uncertainty about function.

イロト イ押 トイチ トイチャー

Statistical challenge: Gene annotation

To 'annotate' a gene means to describe its molecular function, cellular place and conditions of expression, etc. As for identification this constitute a statistical challenge because

- \triangleright Different levels of noise are involved.
- \triangleright Errors in the annotation of a gene are 'inherited' by all genes using this information.
- \blacktriangleright In many organisms there is lack of direct experimental evidence about gene function, thus the researcher must use annoyation inherited from model organisms with a high risk of error.

 $A \cap \overline{A} \cap A = A \cap A \cap \overline{A} \cap A = A \cap A$

Transcriptomics: The genome in action

Genes are 'active' only at particular times and tissues. This is controlled trough a complex network: signals go from the environment to inter and intra cellular places activating and repressing gene expression.

The modern transcriptome

Transcriptomics: The genome in action

A transcriptome experiment (RNA-seq):

- \triangleright Select organism / organ/ tissues / time / conditions \Rightarrow Experimental design
- \triangleright Isolate mRNA, convert to cDNA \Rightarrow construct genetic 'libraries'
- If genome is unknown assembly the transcriptome \Rightarrow core transcriptome
- \triangleright Re-map the reads to the transcriptome \Rightarrow counts for each gene
- \triangleright Statistical analyses of the counts from each library

イロメ イタメ イチメ イチメー

Transcriptomics: Statistical challenges

In an RNA-seq we obtain counts for tens of thousand of genes from each library (the genetic library is the experimental unit, representing a particular replicate for each treatment). Researchers are interested in answering:

1. Which genes are expressed at each treatment?

2. Which genes are 'differentially expressed' between treatments? Statistical questions:

- \blacktriangleright How many replicates per treatment?
- \blacktriangleright How deep do we need to be the sampling (number of gene tags per replicate)?
- \triangleright Which is the 'best' method for the analysis of this kind of data?

イロメ イタメ イラメ イラメ

Transcriptomics: How many genes are expressed?

- \triangleright We are sampling with replacement from a finite population (the expressed genes).
- \triangleright Each expressed gene is represented by one or more mRNA molecules.
- \blacktriangleright The number of expressed genes, k, is unknown.
- \triangleright The same problem exist in Ecology, when estimating the number of species in a community.
- \blacktriangleright The vector of frequencies of frequencies, $(f_1, f_2, f_3, \dots,)$ gives information agout $k(f_0)$
- \triangleright We have obtained better estimators for k, functions of (f_1, f_2, \dots, f_6) which give better results than the one in the literature.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

The problem of the missing genes

True value of f0

 \leftarrow m \rightarrow

→ 伊 → → 目

Si $\leftarrow \Xi \rightarrow$ \equiv

 299

Transcriptomics: Differential gene expression

- \triangleright Counts at each library are the result of a multinomial distribution with unknown number of classes (k) and unknown probabilities, (p_1, p_2, \cdots, p_k) .
- \triangleright This can also be modeled as a set of independent Poisson or Negative Binomial (NB) variables.
- \blacktriangleright In particular NB is attractive because it allows for the estimation of 'extra dispersion' that could be present between replicates.
- \triangleright Classical analysis methods include the ones for 'contingency tables' (Pearson's χ^2 , Likelihood Ratio Test for independence (also called G-test), Fisher exact test (suitable for 2×2 tables), etc.
- \triangleright Other possibility is to use Generalized Lineal Models (GLM), in particle log-linear models.
- \triangleright Because tens of thousands of tests will be performed, there is a need to correct for multi-testing. $(1 - 4)$ $(1 -$

TRANOVA: a method for DGE in transcriptomics

'TRanscriptome Analysis of Variance' (TRANOVA) consist in measure the departure from independence (variance) within and between treatments through the Likelihood Ratio Test (or G-test):

$$
G = \sum_i O_i \log_e \left(\frac{O_i}{E_i}\right)
$$

- \triangleright Values of G are calculated for the counts between treatments (G_h) to test the hypothesis of equality of expression between treatments.
- \blacktriangleright The same test is performed within treatments (G_w) to test the influence of replicates in expression.
- An F test, $F = (G_b/df_b)/(G_w/df_w)$ test the hypothesis of equality of variance between and within treatments.
- \triangleright Combining by conditional probabilities the evidence from these test, we obtain a probability, P_T , that summarizes the evidence of DGE イロメ イ押 トラ ミトラ ミチャ \equiv

Transcriptome of chili pepper fruit during development

Martínez-López et al. BMC Genomics 2014, 15:143 http://www.biomedcentral.com/1471-2164/15/143

 Ω

RESEARCH ARTICLE

Dynamics of the chili pepper transcriptome during fruit development

Luis A Martínez-López^{1,2}, Neftalí Ochoa-Alejo^{2,3} and Octavio Martínez^{1*}

 $4.17 \times$

マーティ ミュラミン

Transcriptome of chili pepper fruit during development

Octavio Martínez [Computational Biology Lab. Langebio, Cinvestav.](#page-0-0)

 \leftarrow

 $2Q$

Bias in RNA-Seq: A serious and unsolved problem

- \triangleright RNA-Seq: Sequencing large number of gene tags from transcriptomes
- \triangleright Main aim: Detecting differences in the expression of genes depending on treatments
- \triangleright Problem: Only the relative expression of the genes can be estimated
- **Proposed Solutions:**
- \triangleright a) Use internal controls (genes assumed to have the same expression)
- \triangleright b) Use external evidence (qRT-PCR, microarrays, ...?)

イロメ イタメ イチメ イチメー

In other 'omics'...

- \triangleright Proteomics: One gene produces more than one peptide (same problems than in genomics for identification, quantification and annotation)
- \triangleright Metabolomics: Thousands of biological compounds are not yet well described (problems for identification, quantification and annotation)
- \blacktriangleright Nascent fields: Methiloma, interactoma, ...
- In all cases the quantity of data is very large and the availability of methods to analyze them is still in development.

 \mathcal{A} and \mathcal{A} is a set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B}

"From Data to Knowledge" Thank you for your attention

http : //computational.biology.langebio.cinvestav.mx/ omartine@langebio.cinvestav.mx