Statistical challenges in the "Omics"

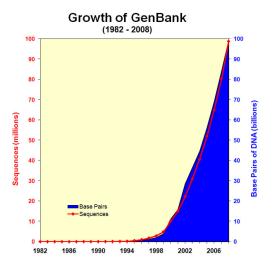
Octavio Martínez de la Vega Computational Biology Lab "From Data to Knowledge"

National Laboratory of Genomics for Biodiversity (Langebio - '*Unidad de Genómica Avanzada*') Cinvestav - Irapuato

March 19, 2015

"Omics"?

Informally refers to the study of 'whole' sets of molecules,


- Genomics Study the whole genome (in contrast to studying a single gene).
- Transcriptomics Study all genes expressed in a tissue under given conditions.
- Proteomics Same for all proteins.
- Metabolomics All chemical compounds produced
- **.**..

The main change with traditional molecular biology:

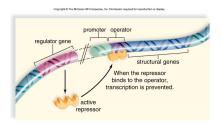
The very large nature of datasets

GeneBank 2015

187,893,826,750 bases, from 181,336,445 sequences

How many genomes are there?

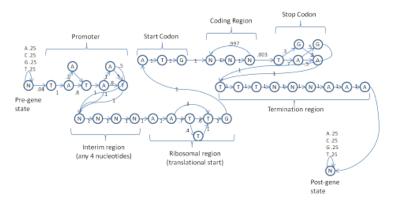
Sequenced versus Existent (both estimated):


- ► Microorganisms: $18,000 / 10 \times 10^6 (< 0.2\%)$
- ► Fungi: $\frac{356}{1.5} / 1.5 \times 10^6$ (< 0.03%)
- ▶ Insects: $98 / 10 \times 10^6$ (< 0.001%)
- ► Plants 150 / 435,000 (< 0.04%)
- ► Terrestrial vertebrates and fish: 235 / 80,500 (< 0.3%)
- ▶ Marine invertebrates: $60 / 6.5 \times 10^6$ (< .001%)
- ▶ Other (nematodes, ...): $17 / 1 \times 10^6$ (< .001%)

Genomics pipeline / challenges

- Select one (or a few) individual(s) / Who?.
- Sequence tens (to hundreds) of millions of small DNA sequences / keep and order these data.
- Solve this gigantic puzzle (obtain the 'genome') / Assembling.
- ▶ Where are the genes? / find (models) for genes.
- ▶ Make sense of all this / Annotate, Annotate, Annotate, ...

Genes: complex constructs


Genes are complex 'data structures' They include code for transcription and translation but also fuzzy signals for its processing (promotors, enhancers, exon / intron borders, methylation patterns, etc.)

Finding the 'genes' in a newly sequenced genome is a non-trivial exercise.

Statistical challenge: Model genes by HMM

Hidden Markov models (HMM): A finite model describing the probability distribution over an infinite set of sequences.

Statistical challenge: Model genes by HMM

To predict genes in a new genome by HMM we need:

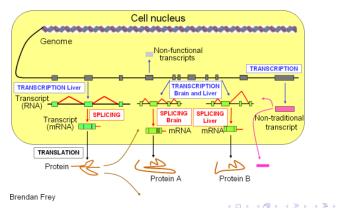
- ► A good model with accurate estimates of transition probabilities.
- ► This can only be obtained and contrasted using empirical evidence on related genomes.
- Even when some of the states are well defines (p.e., 'coding' vs. 'non-coding' or repeated DNA), other are more fuzzy signals (p.e., 'intron' vs. 'exon' regions, etc.).
- Signals (code) between and within genes are not as well conserved as the usual 'genetic code' -in fact, there are many meta-codes that are taxa-specific.

Statistical challenge: Gene Identification

Even when model organisms (Human, mouse, rat among mammalians; Arabidopsis among plants, etc.) have well identified genes in other organisms we do not have experimental evidence to identify the genes with particular peptides

- We can compare similarity between DNA segments to look for an 'orthologous' gene.
- However, different gene families evolve (diverge) at different speeds.
- ► For many classes of non-protein coding genes there is a high degree of uncertainty about function.

Statistical challenge: Gene annotation


To 'annotate' a gene means to describe its molecular function, cellular place and conditions of expression, etc. As for identification this constitute a statistical challenge because

- Different levels of noise are involved.
- ► Errors in the annotation of a gene are 'inherited' by all genes using this information.
- In many organisms there is lack of direct experimental evidence about gene function, thus the researcher must use annoyation inherited from model organisms with a high risk of error.

Transcriptomics: The genome in action

Genes are 'active' only at particular times and tissues. This is controlled trough a complex network: signals go from the environment to inter and intra cellular places activating and repressing gene expression.

The modern transcriptome

Transcriptomics: The genome in action

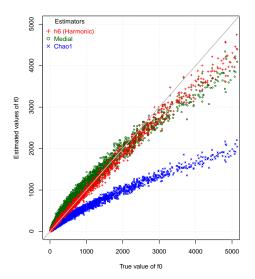
A transcriptome experiment (RNA-seq):

- ▶ Select organism / organ/ tissues / time / conditions ⇒ Experimental design
- Isolate mRNA, convert to cDNA ⇒ construct genetic 'libraries'
- ▶ If genome is unknown assembly the transcriptome ⇒ core transcriptome
- ▶ Re-map the reads to the transcriptome ⇒ counts for each gene
- Statistical analyses of the counts from each library

Transcriptomics: Statistical challenges

In an RNA-seq we obtain counts for tens of thousand of genes from each library (the genetic library is the experimental unit, representing a particular replicate for each treatment). Researchers are interested in answering:

- 1. Which genes are expressed at each treatment?
- 2. Which genes are 'differentially expressed' between treatments? Statistical questions:
 - How many replicates per treatment?
 - How deep do we need to be the sampling (number of gene tags per replicate)?
 - Which is the 'best' method for the analysis of this kind of data?



Transcriptomics: How many genes are expressed?

- We are sampling with replacement from a finite population (the expressed genes).
- Each expressed gene is represented by one or more mRNA molecules.
- ▶ The number of expressed genes, k, is unknown.
- The same problem exist in Ecology, when estimating the number of species in a community.
- ▶ The vector of frequencies of frequencies, $(f_1, f_2, f_3, \dots,)$ gives information agout k (f_0)
- ▶ We have obtained better estimators for k, functions of (f_1, f_2, \dots, f_6) which give better results than the one in the literature.

The problem of the missing genes

Transcriptomics: Differential gene expression

- ▶ Counts at each library are the result of a multinomial distribution with unknown number of classes (k) and unknown probabilities, (p_1, p_2, \dots, p_k) .
- This can also be modeled as a set of independent Poisson or Negative Binomial (NB) variables.
- In particular NB is attractive because it allows for the estimation of 'extra dispersion' that could be present between replicates.
- ▶ Classical analysis methods include the ones for 'contingency tables' (Pearson's χ^2 , Likelihood Ratio Test for independence (also called *G*-test), Fisher exact test (suitable for 2 × 2 tables), etc.
- ▶ Other possibility is to use Generalized Lineal Models (GLM), in particle log-linear models.
- ▶ Because tens of thousands of tests will be performed, there is a need to correct for multi-testing.

TRANOVA: a method for DGE in transcriptomics

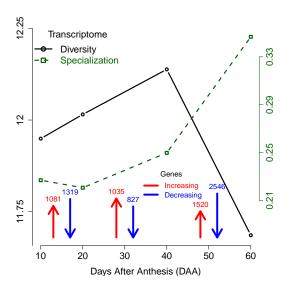
'TRanscriptome Analysis of Variance' (TRANOVA) consist in measure the departure from independence (variance) within and between treatments through the Likelihood Ratio Test (or G-test):

$$G = \sum_{i} O_{i} \log_{e} \left(\frac{O_{i}}{E_{i}} \right)$$

- Values of G are calculated for the counts between treatments (G_b) to test the hypothesis of equality of expression between treatments.
- ▶ The same test is performed within treatments (G_w) to test the influence of replicates in expression.
- ▶ An F test, $F = (G_b/df_b)/(G_w/df_w)$ test the hypothesis of equality of variance between and within treatments.
- ► Combining by conditional probabilities the evidence from these test, we obtain a probability, P_T , that summarizes the evidence of DGF

Transcriptome of chili pepper fruit during development

Martínez-López et al. BMC Genomics 2014, 15:143 http://www.biomedcentral.com/1471-2164/15/143


RESEARCH ARTICLE

Open Access

Dynamics of the chili pepper transcriptome during fruit development

Luis A Martínez-López^{1,2}, Neftalí Ochoa-Alejo^{2,3} and Octavio Martínez^{1*}

Transcriptome of chili pepper fruit during development

Bias in RNA-Seq: A serious and unsolved problem

- RNA-Seq: Sequencing large number of gene tags from transcriptomes
- Main aim: Detecting differences in the expression of genes depending on treatments
- Problem: Only the relative expression of the genes can be estimated
- Proposed Solutions:
- a) Use internal controls (genes assumed to have the same expression)
- ▶ b) Use external evidence (qRT-PCR, microarrays, ... ?)

In other 'omics'...

- Proteomics: One gene produces more than one peptide (same problems than in genomics for identification, quantification and annotation)
- Metabolomics: Thousands of biological compounds are not yet well described (problems for identification, quantification and annotation)
- ▶ Nascent fields: Methiloma, interactoma, ...
- In all cases the quantity of data is very large and the availability of methods to analyze them is still in development.

"From Data to Knowledge" Thank you for your attention

http://computational.biology.langebio.cinvestav.mx/omartine@langebio.cinvestav.mx